
CIIC Harness

efabless

Sep 07, 2023

CONTENTS

1 Table of contents 3

2 Overview 5

3 Install Caravel 7

4 Caravel Integration 9
4.1 User Project: Power on Reset . 9
4.2 Verilog Integration . 9

5 Building the PDK 11

6 Running Full Chip Simulation 13

7 Analog Design Flow 15

8 Running Open-MPW Precheck Locally 17

9 Runing transistor level LVS 19

10 Other Miscellaneous Targets 21

11 Checklist for Open-MPW Submission 23

i

ii

CIIC Harness

CONTENTS 1

CIIC Harness

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

• Overview

• Install Caravel

• Caravel Integration

– User Project: Power on Reset

– Verilog Integration

• Running Full Chip Simulation

• Analog Design Flow

• Other Miscellaneous Targets

• Checklist for Open-MPW Submission

3

CIIC Harness

4 Chapter 1. Table of contents

CHAPTER

TWO

OVERVIEW

This repo contains a sample user project that utilizes the caravan chip (analog version of caravel) user space. The user
project is a simple power-on-reset that showcases how to make use of caravan’s user space utilities like IO pads, logic
analyzer probes, and wishbone port. The repo also demonstrates the recommended structure for the open-mpw analog
projects.

5

https://github.com/efabless/caravel.git

CIIC Harness

6 Chapter 2. Overview

CHAPTER

THREE

INSTALL CARAVEL

To setup caravel, run the following:

By default, CARAVEL_ROOT is set to $(pwd)/caravel
If you want to install caravel at a different location, run "export CARAVEL_ROOT=
→˓<caravel-path>"
Disable submodule installation if needed by, run "export SUBMODULE=0"

git clone https://github.com/efabless/caravel_user_project_analog.git
cd caravel_user_project_analog
make install

To update the installed caravel to the latest, run:

make update_caravel

To remove caravel, run

make uninstall

By default caravel-lite is installed. To install the full version of caravel, run this prior to calling make install.

export CARAVEL_LITE=0

7

https://github.com/efabless/caravel-lite.git

CIIC Harness

8 Chapter 3. Install Caravel

CHAPTER

FOUR

CARAVEL INTEGRATION

4.1 User Project: Power on Reset

This is an example user analog project which breaks out the power-on-reset circuit used by the management SoC for
power-up behavior so that the circuit input and output can be independently controlled and measured.

The power-on-reset circuit itself is a simple, non-temperature-compensated analog delay calibrated to 15ms under
nominal conditions, with a Schmitt trigger inverter to provide hysteresis around the trigger point to provide a clean
output reset signal.

The circuit provides a single high-voltage (3.3V domain) sense-inverted reset signal “porb_h” and complementary
low-voltage (1.8V domain) reset signals “por_l” and “porb_l”.

The only input to the circuit is the 3.3V domain power supply itself.

4.2 Verilog Integration

You need to create a wrapper around your macro that adheres to the template at user_analog_project_wrapper. The
wrapper top module must be named user_analog_project_wrapper and must have the same input and output ports
as the analog wrapper template. The wrapper gives access to the user space utilities provided by caravel like IO ports,
logic analyzer probes, and wishbone bus connection to the management SoC.

The verilog modules instantiated in the wrapper module should represent the analog project; they need not be more
than empty blocks, but it is encouraged to write a simple behavioral description of the analog circuit in standard verilog,
using real-valued wires when necessary. This allows the whole system to be run in a verilog testbench and verify the
connectivity to the padframe and management SoC, even if the testbench C code does nothing more than set the mode
of each GPIO pin. The example top-level verilog code emulates the behavior of the power-on-reset delay after applying
a valid power supply to the circuit.

9

https://github.com/efabless/caravel/blob/master/verilog/rtl/__user_analog_project_wrapper.v

CIIC Harness

10 Chapter 4. Caravel Integration

CHAPTER

FIVE

BUILDING THE PDK

For more information about volare click here

set PDK_ROOT to the path you wish to use for the pdk
export PDK_ROOT=<pdk-installation-path

use volare to download the pdk
To change the default pdk version you can export OPEN_PDKS_COMMIT=<pdk_commit>
make pdk-with-volare

11

https://github.com/efabless/volare

CIIC Harness

12 Chapter 5. Building the PDK

CHAPTER

SIX

RUNNING FULL CHIP SIMULATION

First, you will need to install the simulation environment, by

make simenv

This will pull a docker image with the needed tools installed.

To install the simulation environment locally, refer to README

Then, run the RTL and GL simulation by

export PDK_ROOT=<pdk-installation-path>
export CARAVEL_ROOT=$(pwd)/caravel
specify simulation mode: RTL/GL
export SIM=RTL
Run the mprj_por testbench, make verify-mprj_por
make verify-<testbench-name>

The verilog test-benches are under this directory verilog/dv.

13

https://github.com/efabless/caravel_user_project_analog/blob/main/verilog/dv/README.md
https://github.com/efabless/caravel_user_project_analog/tree/main/verilog/dv

CIIC Harness

14 Chapter 6. Running Full Chip Simulation

CHAPTER

SEVEN

ANALOG DESIGN FLOW

The example project uses a very simple analog design flow with schematics made with xschem, simulation done using
ngspice, layout done with magic, and LVS verification done with netgen. Sources for the power-on-reset circuit are
in the “xschem/” directory, which also includes a schematic representing the wrapper with all of its ports, for use in a
testbench circuit. There are several testbenches in the example, starting from tests of the component devices to a full
test of the completed project inside the wrapper.

There is no automation in this project; the schematic and layout were done by hand, including both the power-on-reset
block and the power and signal routing to the pins on the wrapper.

The power-on-reset circuit itself is simple and is not compensated for temperature or voltage variation. When the
power supply reaches a sufficient level, the voltage divider sets the gate voltage on an nFET device to draw a current
of nominally 240nA. The testbench “threshold_test_tb.spice” does a DC sweep to find the gate voltage that produces
this value. Next, a cascaded current mirror divides down the current by a factor of (roughly) 400. The testbench
current_test.spice checks the current division value. Finally, the output ~600pA from the end of the current mirror is
accumulated on a capacitor until the value trips the input of the 3.3V Schmitt trigger buffer from the sky130_fd_sd_hvl
library. The capacitor is sized to peg the nominal time to trigger at 15ms. The schematic “example_por_tb.sch” sets
up the testbench for this timing test.

The output of the Schmitt trigger buffer becomes the high-voltage output, and is input to a standard buffer and inverter
used as level shifters from the 3.3V domain to the 1.8V domain, producing complementary low-voltage outputs.

The user project is formed from two power-on-reset circuits, one of which is connected to the user area VDDA1 power
supply, and the other of which is connected to one of the analog I/O pads, used as a power supply input and connected
to its voltage ESD clamp circuit. The 3.3V domain outputs are connected directly to GPIO pads through the ESD (150
ohm series) connection. The 1.8V domain outputs are connected to GPIO pads through the usual I/O connections, with
the corresponding user output enable (sense inverted) held low to keep the output always active.

The C code testbench is in “verilog/dv/mprj_por/mprj_por.c” and only sets the GPIO pins used to the correct state (user
output function). The POR circuit outputs are monitored by the testbench verilog file “mprj_por_tb.v” which will fail
if the connections are wrong or if the behavioral POR verilog does not work as intended.

Note that to properly test this circuit, the GPIO pins have to be configured for output to be seen and measured, implying
that the management SoC power supply must be stable and the C program running off of the SPI flash before the user
area power supplies are raised.

NOTE

When running spice extraction on the user_analog_project_wrapper layout, it is recommended to use
ext2spice short resistor. This is to preserve all the different port names in the extracted netlist. In case
you have two ports that are electrically shorted in the layout, the short resistor option will tell magic not
to merge the two shorted ports instead it adds zero-ohm ideal resistors between the net names so that they
can be kept as separate nets.

15

CIIC Harness

16 Chapter 7. Analog Design Flow

CHAPTER

EIGHT

RUNNING OPEN-MPW PRECHECK LOCALLY

You can install the precheck by running

By default, this install the precheck in your home directory
To change the installtion path, run "export PRECHECK_ROOT=<precheck installation path>"
make precheck

This will clone the precheck repo and pull the latest precheck docker image.

Then, you can run the precheck by running Specify CARAVEL_ROOT before running any of the following,

export CARAVEL_ROOT=$(pwd)/caravel
export CARAVEL_ROOT=<path-to-caravel>
make run-precheck

This will run all the precheck checks on your project and will retain the logs under the checks directory.

To disable running LVS/Soft/ERC connection checks:

DISABLE_LVS=1 make run-precheck

17

CIIC Harness

18 Chapter 8. Running Open-MPW Precheck Locally

CHAPTER

NINE

RUNING TRANSISTOR LEVEL LVS

For the design to pass precheck, a custom lvs configuration file for your design is needed, config file can be found under
lvs/<design_name>/lvs_config.json

The lvs_config.json files are a possibly hierarchical set of files to set parameters for device level LVS

Required variables: - TOP_SOURCE : Top source cell name. - TOP_LAYOUT : Top layout cell name. - LAY-
OUT_FILE : Layout gds data file. - LVS_SPICE_FILES : A list of spice files. - LVS_VERILOG_FILES : A list
of verilog files. Note: files with child modules should be listed before parent modules. Not needed for purely analog
designs.

Files must be defined as a absolute path beginning with a shell variable such as $PDK_ROOT or $UPRJ_ROOT.

Optional variable lists: Hierarchical config files: - INCLUDE_CONFIGS : List of configuration files to read recur-
sively.

Extraction related. * may be used as a wild card character. - EXTRACT_FLATGLOB : List of cell names to flatten
before extraction.

Cells without text tend to work better if flattened. Note: it is necessary to flatten all sub cells of any cells
listed.

• EXTRACT_ABSTRACT : List of cells to extract as abstract devices. Normally, cells that do not contain any de-
vices will be flattened during netlisting. Using this variable can prevent unwanted flattening of empty cells. This
has no effect of cells that are flattened because of a small number of layers. Internal connectivity is maintained
(at least at the top level).

LVS related. * may be used as a wild card character. - LVS_FLATTEN : List of cells to flatten before comparing,

Sometimes matching topologies with mismatched pins cause errors at a higher level. Flattening these cells
can yield a match.

• LVS_NOFLATTEN
[List of cells not to be flattened in case of a mismatch.] Lower level errors can propagate to the top of
the chip resulting in long run times. Specify cells here to prevent flattening. May still cause higher level
problems if there are pin mismatches.

• LVS_IGNORE
[List of cells to ignore during LVS.] Cells ignored result in LVS ending with a warning. Generally, should
only be used when debugging and not on the final netlist. Ignoring cells results in a non-zero return code.

NOTE: Missing files and undefined variables result in fatal errors.

19

CIIC Harness

20 Chapter 9. Runing transistor level LVS

CHAPTER

TEN

OTHER MISCELLANEOUS TARGETS

The makefile provides a number of useful that targets that can run compress, uncompress, and run XOR checks on your
design.

Compress gds files and any file larger than 100MB (GH file size limit),

make compress

Uncompress files,

make uncompress

Specify CARAVEL_ROOT before running any of the following,

export CARAVEL_ROOT=$(pwd)/caravel
export CARAVEL_ROOT=<path-to-caravel>

Run XOR check,

make xor-analog-wrapper

Run standalone LVS,

make lvs-<macro_name> # macro is the name of the macro you want to run␣
→˓LVS on

NOTE: You have to create a new config file for each macro under lvs/<macro_name>/lvs_config.
json

21

CIIC Harness

22 Chapter 10. Other Miscellaneous Targets

CHAPTER

ELEVEN

CHECKLIST FOR OPEN-MPW SUBMISSION

|:heavy_check_mark:| The project repo adheres to the same directory structure in this repo.

|:heavy_check_mark:| The project repo contain info.yaml at the project root.

|:heavy_check_mark:| Top level macro is named user_analog_project_wrapper.

|:heavy_check_mark:| Full Chip Simulation passes for RTL and GL (gate-level)

|:heavy_check_mark:| The project contains a spice netlist for the user_analog_project_wrapper at net-
gen/user_analog_project_wrapper.spice

|:heavy_check_mark:| The hardened Macros are LVS and DRC clean

|:heavy_check_mark:| The user_analog_project_wrapper adheres to empty wrapper template order specified at
user_analog_project_wrapper_empty

|:heavy_check_mark:| XOR check passes with zero total difference.

|:heavy_check_mark:| Open-MPW-Precheck tool runs successfully.

23

https://github.com/efabless/caravel/blob/master/mag/user_analog_project_wrapper_empty.mag

	Table of contents
	Overview
	Install Caravel
	Caravel Integration
	User Project: Power on Reset
	Verilog Integration

	Building the PDK
	Running Full Chip Simulation
	Analog Design Flow
	Running Open-MPW Precheck Locally
	Runing transistor level LVS
	Other Miscellaneous Targets
	Checklist for Open-MPW Submission

